⁹Be(⁴⁰Ar, ¹⁸N)

Type Author Citation Literature Cutoff Date

Full Evaluation R. Spitzer, J. H. Kelley ENSDF 30-Jun-2021

2000Oz01: A beam of 40 Ar at E \approx 1 GeV/nucleon impinged on a Be target (4.0 g/cm²) at the GSI/FRS facility. The 19 B fragments of interest were identified using the B $_{\rho}$ settings along with scintillators to measured Δ E and time-of-flight. The 18 N production cross section was measured as roughly \approx 3.95×10⁻¹⁴ b.

2007No13: Production of 18 N via projectile fragmentation was studied at the RIKEN Accelerator Research Facility using 40 Ar beams at E=90, 94 MeV/nucleon that impinged on either a 95 mg/cm² thick 9 Be target or a 17 mg/cm² thick nat Ta target. The beams were momentum analyzed using the RIPS doubly achromatic spectrometer before being identified using two surface-barrier silicon counters and a plastic scintillator to identify products via ΔE and time-of-flight (tof) at the focal plane. The fragment momentum distribution and production cross sections were deduced. See also (2015Mo17) for transverse momentum (P_T) distribution and width (σ_T) analysis.

2012Kw02: Several light neutron-rich nuclides, produced by projectile fragmentation of an 40 Ar beam at E=140 MeV/nucleon, bombarded one of three targets, 668 mg/cm² 9 Be, 775 mg/cm² nat Ni, and 1086 mg/cm² 181 Ta at the National Superconducting Cyclotron Laboratory (NSCL). Fragments were momentum analyzed using the A1900 separator and identified at the final focus using time-of-flight and a telescope consisting of five Si Δ E detectors. The fragmentation cross sections, parallel momentum transfers, and parallel momentum distribution widths were measured and compared to the theoretical predictions.

¹⁸N Levels

E(level)

0